
12 Instantons and Gaugino Condensation

12.1 Review of Instantons

Recall that instantons are Euclidean solutions of DµF a
µν , characterized by a

size ρ, which approach

Aµ(x) → iU(x)∂µU(x)† (12.1)

as |x| → ∞. Instantons break axial U(1) symmetries. Consider the axial
symmetry that has charge +1 for all (left-handed) fermions. We have

∂µJ
µ
A ∝ F aµνF̃ a

µν (12.2)

Integrating this current in the instanton background one finds:∫
d4x∂µJ

µ
A = n

[∑
r

nr 2T (r)

]
(12.3)

thus instantons can create or annihilate fermions. Also an axial rotation of
the fermions

ψ → eiαψ (12.4)

is equivalent to a shift of θYM

θYM → θYM − α
∑
r

nr 2T (r) (12.5)

In the instanton background the gauge covariant derivative can be diago-
nalized,

σµDµψi = λiψi (12.6)

For a fermion in representation r one finds 2T (r) zero eigenvalues. (In
the anti-instanton background ψ† has 2T (r) zero eigenvalues.) Consider a
fundamental of SU(N) with T ( ) = 1

2 . We can write ψi in terms of a
grassman variable and a complex eigenfunction ψi = ξifi(x). We then have

ψ = ξ0f0 +
∑

i

ξifi (12.7)

ψ† =
∑

i

ξ†i f
∗
i (12.8)
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where f0 corresponds to the zero eigenvalue. The path integration over this
particular fermion is then∫

DψDψ† =
∫
dξ0

∫ ∏
ij

dξidξ
†
j (12.9)

So∫
DψDψ† exp

(
−
∫
ψ†σµDµψ

)
=
∫
dξ0

∫ ∏
ij

dξidξ
†
j exp

(
−
∑
n

λnξ
†
nξn

)

=
∫
dξ0

∫ ∏
ij

dξidξ
†
j

∏
n

(
1− λnξ

†
nξn

)
=
∫
dξ0

∏
n

λn = 0 . (12.10)

However ∫
DψDψ† exp

(
−
∫
ψ†σµDµψ

)
ψ(x) =

∏
n

λnf0(x) (12.11)

At distances much larger than the instanton size ‘t Hooft showed that
instantons produce effective interactions

Linst = adetQiα
Qαj + h.c. (12.12)

This interaction respects the non-Abelian SU(F )×SU(F ) flavor symmetry
but breaks the U(1)A symmetry.

In a theory with scalars that carry gauge quantum numbers, vev’s of
the scalars prevent us from finding solutions of the classical Euclidean eq.
of motion. However we can find approximate solutions when we drop the
scalar contribution to the gauge current:

DµF a
µν = 0 (12.13)

DµDµφ
j +

∂V (φ)
∂φ∗j

= 0 (12.14)

As |x| → ∞

Aµ(x) → iU(x)∂µU(x)† (12.15)
φj → U(x)〈φj〉 (12.16)
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Where 〈φj〉 is a vacuum solution. For small (ρ < 1/(gv)) instantons with a
completely broken gauge symmetry we find Euclidean actions:

Sinst =
8π
g2

(12.17)

Sφ = 8π2ρ2v2 (12.18)

Integrating over instanton locations and sizes we find∫
d4x0

∫
dρ

ρ5
e−Sinst−Sφ

=
∫
d4x0

∫
dρ

ρ5
(ρΛ)b e−8π2ρ2v2

(12.19)

which is dominated at

ρ2 =
b

16π2v2
(12.20)

Thus the integration is convergent: breaking the gauge symmetry provides
an infrared cutoff.

Note that since Aµ is related to an element of the gauge group at |x| →
∞, the topological character of the instanton relies on

U : S3 → SU(2) ⊂ G (12.21)

If the scalar fields break the gauge group G down to H, then there will still
be pure instanton in the H gauge theory if SU(2) ⊂ H. If the instantons
in G/H can be gauge rotated into SU(2) ⊂ H, then all G instanton effects
can be accounted for by the effective theory through H instantons. If not,
we must add new interactions in the effective theory in order to match the
physics properly. Examples of when this is necessary include

SU(N) breaks completely
SU(N) → U(1)
SU(N)× SU(N) → SU(N)diag

SU(N) → SO(N)

This obviously happens whenever there are a different number of zero modes
for G and H instantons. In general new interactions must be included in
the effective theory when π3(G/H) is non-trivial.
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12.2 Gaugino Condensation

Note that in SU(N) SUSY Yang-Mills (with only the only fermion being a
gaugino) the U(1)R symmetry is broken by instantons.

λa → eiαλa (12.22)

is equivalent to

θYM → θYM − 2Nα (12.23)

since λa has 2N zero-modes in a one-instanton background. This is only a
symmetry when

α =
kπ

N
(12.24)

so U(1)R is broken down to a Z2N subgroup. Assuming that SUSY Yang-
Mills has no massless particles, just massive color-singlet composites, then
holomorphy and symmetries determine the effective superpotential to be:

Weff = aµ3e
2πiτ

N (12.25)

where

τ =
θYM

2π
+

4πi
g2(µ)

(12.26)

The gaugino condensate is

〈λaλa〉 = 16πi
∂

∂Fτ
lnZ

= 16πi
∂

∂Fτ

∫
d2θWeff

= 16πi
∂

∂τ
Weff

= 16πi
2πi
N
aµ3e

2πiτ
N

= −32π2

N
aΛ3 (12.27)

Since

〈λaλa〉 → e2iα〈λaλa〉 (12.28)

where α = kπ/N , Z2N is broken to Z2, and there should be N distinct vacua.
We see that θYM → θYM + 2π sweeps out N different values for 〈λaλa〉.
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